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Abstract

Background: Mosquito-borne orthobunyaviruses are a growing priority for public and animal health in Canada.
It is anticipated that disease incidence will increase due to a warming climate, given that habitats are expanding
for reservoir hosts and vectors, particularly in Canada. Little is known about the ecology of primary vectors that
perpetuate these orthobunyaviruses, including the viral transmission cycle and the impact of climatic and land-
scape factors.
Methods: A scoping review was conducted to describe the current state of knowledge on the epidemiology of
orthobunyaviruses relevant to Canada. The Preferred Reporting Items for Systematic Reviews and Meta-
Analyses extension for Scoping Reviews guidelines was used to characterize studies focused on vector species.
A literature search was conducted in six databases and gray literature. Eligible studies characterized ortho-
bunyavirus epidemiology related to vector species, including viral competency, geospatial distributions, sea-
sonal trends, and/or risk factors.
Results: A total of 1734 unique citations were identified. Screening of these citations revealed 172 relevant
studies, from which 87 studies presented primary data related to vectors. The orthobunyaviruses included Cache
Valley virus (CVV), Jamestown Canyon virus ( JCV), Snowshoe Hare virus (SHV), and La Crosse virus
(LACV). Surveillance was the predominant study focus, with most citations representing the United States,
specifically, LACV surveillance in Tennessee, followed by CVV and JCV in Connecticut. Orthobunyaviruses
were detected in many mosquito species across multiple genera, with high vector specificity only being reported
for LACV, which included Aedes triseriatus, Aedes albopictus, and Aedes japonicus. Peridomestic areas were
positively associated with infected mosquitoes compared with dense forests. Orthobunyavirus infections, coin-
fections, and gut microbiota affected mosquito feeding and breeding behavior.
Conclusion: Knowledge gaps included Canadian surveillance data, disease modeling, and risk projections.
Further research in these areas, especially accounting for climate change, is needed to guide health policy for
prevention of orthobunyaviral disease.
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Introduction

Cache Valley virus (CVV), Jamestown Canyon virus
( JCV), La Crosse virus (LACV), and Snowshoe Hare

virus (SHV) are mosquito-borne orthobunyaviruses (Peri-
bunyaviridae family) that are endemic in North America, and
can cause viral meningoencephalitis in humans (Evans and
Peterson, 2019; Gill et al., 2019; Rust et al., 1999). Cache
Valley virus can cause lethal congenital deformities in ani-
mals, predominantly sheep (Chung et al., 1990; Edwards
et al., 1997). Orthobunyaviruses are the second leading cause
of morbidity from domestic arboviral infections in both Ca-
nada and the United States, and can predispose patients to
chronic sequelae (Fagre et al., 2023; Public Health Agency of
Canada, 2023; Soto et al., 2022; Vahey et al., 2021). Infec-
tions are likely underdiagnosed (Dimitrova et al., 2011;
Makowski et al., 2011), and since reporting is based on
passive surveillance, the true health burden of orthobunya-
viral diseases is unknown (Totten et al., 2019).

Range expansion of orthobunyaviral vectors due to climate
change has been identified as an emerging public health risk,
with establishment already noted for Aedes (Ae.) albopictus
in the temperate climates of Vermont, the United States and
Ontario, Canada (Giordano et al., 2020; Khan et al., 2020;
Kulkarni et al., 2015; Ludwig et al., 2019; Ogden et al., 2019;
Vermont Department of Health, 2024). As such, there is a
need to prioritize orthobunyavirus epidemiology research.

These four mosquito-borne zoonoses have distinct sylvatic
cycles. The white-tailed deer (Odocoileus virginianus) is con-
sidered the main vertebrate reservoir for CVV and JCV
(Blackmore and Grimstad, 1998; Boromisa and Grimstad,
1987; Issel et al., 1972), while the Eastern chipmunk (Tamias
striatus) and snowshoe hare (Lepus americanus) are the pri-
mary hosts for LACV and SHV, respectively (Cully et al.,
1992; Cully et al., 1991; Hoff et al., 1969). The vectors also
vary across the viruses. Aedes triseriatus is considered the
primary vector for transmitting LACV, with Ae. albopictus and
Ae. japonicus potentially important secondary LACV vectors
(Bara et al., 2016; Harris et al., 2015; Westby et al., 2015).
Conversely, for the other three orthobunyaviruses, a wide range
of mosquito species across genera are associated with viral
transmission (Andreadis et al., 2014; Andreadis et al., 2008;
Heard et al., 1991; McMillan et al., 2020; Walker et al., 1993).

Mosquito-borne diseases subsequently arise from complex
and highly sensitive interactions between the pathogen,
vector, host, and environment. Alterations to this dynamic
ecological balance can significantly affect transmission
dynamics. Such examples include (1) competition either
between mosquito species in the same geographic location or
between multiple pathogens within an individual mosquito
(Bevins, 2008; Grim, 2006); (2) climatic changes that impact
the development duration of the mosquito and the extrinsic
incubation period of the virus; (3) land use changes that alter
interaction frequencies between vectors and hosts (Arm-
strong et al., 2017; Bara and Muturi, 2015; Khan et al., 2020;
Swanson et al., 2000); (4) genetic reassortment within the
virus that changes virulence, vector competency, or host
range (Baker et al., 2021; Borucki et al., 1999), or (5) a
combination of several of these factors.

These complex relationships are well studied for West Nile
virus (WNV), resulting in robust surveillance and preventive
measures for mitigating disease (Andreadis et al., 2004;

Andreadis et al., 2001; Drebot et al., 2003; Giordano et al.,
2018; Giordano et al., 2017; Nosal and Pellizzari, 2003).
However, the transmission cycle is not well understood for
orthobunyaviruses in Canada, particularly the vector species
involved. Studies have investigated the profile of mosquito
vectors in Canada, but viral testing is minimal and incon-
sistently reported (Drebot, 2015). This scoping review aims
to describe the current state of knowledge on the epidemi-
ology of orthobunyaviruses of Canadian public and animal
health relevance in the context of vector species, including
climate change impacts on the ecology, distribution, and
exposure risk in orthobunyavirus vectors.

Methods

The methods were previously described in Bergevin et al.
(2024). In brief, the protocol was established a priori (in Doc.
S1 of Bergevin et al., 2024) and guided the process for the
literature search, screening, and data characterization, all of
which adhered to the Preferred Reporting Items for Sys-
tematic Reviews and Meta-Analyses extension for Scoping
Reviews (PRISMA-ScR) guidelines and methodological
framework (Peters et al., 2015; Tricco et al., 2018). A litera-
ture search was performed up to March 12, 2021 in six
databases comprised of primary research articles related to
medicine, public health, science, and the environment.

In addition, gray literature searches were performed in
Google, Google scholar, five theses repositories, and gov-
ernment health agency websites representing the national,
provincial/statewide, and local levels. Searches included
terms related to CVV, JCV, LACV, SHV, another orthobu-
nyavirus referenced in the context of Canada, or a vector or
host species reported in the context of a relevant orthobu-
nyavirus. Multiple techniques were implemented to validate
the literature search, including bibliography evaluations of
seminal papers and review articles.

Citations identified were uploaded into reference man-
agement software (Zotero; Center for History and New
Media, George Mason University, Fairfax, VA) and dedu-
plicated. Citations were next uploaded to an online system-
atic review management program (Distiller SR; Evidence
Partners, Ottawa, Canada) for additional deduplication and
relevance screening. Citations were included if published
during or after 1999. This year was chosen because it was
when the first human case of WNV was detected in North
America, which led to robust improvements in mosquito
surveillance and arbovirus detection methods (Drebot et al.,
2003; Ford-Jones et al., 2002).

Eligible citations were defined as primary studies, in
English or French, and had an epidemiologic focus. Despite
interest in orthobunyaviruses of relevance in Canada, no
geographic restrictions were placed to fully capture the cur-
rent knowledge base on these viruses. Eligibility was evalu-
ated first by title/abstract followed by full-text screening.
Included citations were then characterized (in Doc. S1 of
Bergevin et al., 2024). All screening and data characterization
were performed by two independent reviewers, and if agree-
ment was not met, a third reviewer was consulted. All extracted
data were exported from Distiller SR in spreadsheet format for
analysis and visualization using Excel, ver. 16.3 (Microsoft
Corp., Redmond, WA) and RStudio, ver. 2023.03 (Posit soft-
ware, PBC: Integrated Development for R; Boston, MA).
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During data characterization, it became apparent that
vector- and host-related data could not adequately be rep-
orted in a single scoping review due to the breadth of relevant
data captured. Since the relevant studies reported solely on
host-related or vector-related findings, with minimal excep-
tions, the studies were characterized in a way to prevent
double reporting. One publication presented epidemiologic
data related to host species, including incidence, geospatial
distribution of prevalence, risk factors associated with ver-
tebrate host species, and seasonal trends (Bergevin et al.,
2024). This article focuses on orthobunyaviruses in the
context of vector species, including the viral transmission
cycle and the impact of climatic and landscape factors.

Results

General characteristics

The literature search identified 1734 unique citations.
Following title/abstract and full-text screening, 172 relevant
citations were identified, of which 87 citations (51%) pre-
sented primary data pertaining to vector species. A subset of
these vector studies applied a broader perspective by inves-
tigating additional aspects of the transmission cycle, inc-
luding environmental factors (n = 23, 26%), deeper analyses
of the orthobunyaviruses (n = 26, 30%), or host surveillance
in overlapping geographic regions (n = 11, 13%) (Supple-
mentary Fig. S1).

Among the 87 studies that presented vector data (Supple-
mentary Data S1), all in English, 77 (89%) were peer-
reviewed primary publications, and 10 (11%) were gray
literature studies comprised of a conference proceeding
(CVV focused) (Langer-Curry et al., 2005), a state depart-
ment public health report (LACV focused) (Byrd et al.,
2018), and 8 theses (nLACV = 7, nJCV,SHV = 1) (Bassett, 2014;
Caldwell, 2004; Grim, 2006; Henry, 2016; Morton, 2003;
Ramaswamy, 2015; Scheffel, 2006; Troyano, 2009).

Seventy-one studies investigated a single orthobunyavirus,
and 16 studies assessed multiple orthobunyaviruses (Fig. 1).
LACV was investigated most often (69%) and predominantly
in isolation. In contrast, JCV and SHV were more often
investigated in combination with other orthobunyaviruses. For
CVV, the studies were split between focusing on the indi-
vidual virus and in combination with other orthobunyaviruses.

The number of publications trended upward over time,
with half the citations published in 2013 or later, and the most

prolific year being 2020 (nine studies) (Fig. 2). Vector sur-
veillance and virus detection studies were most common
(n = 49). A subset of these studies further explored virus
phylogeny (n = 18). Spatiotemporal risk factor analysis
(n = 33) was evaluated in relation to geographic distribution
or seasonal patterns of vectors and viruses. Pathogen trans-
mission studies (n = 31) explored vector competency (n = 20),
bloodmeal analysis (n = 7), and/or coinfection effects on
orthobunyavirus transmission (n = 5).

Environmental risk factors were investigated for associa-
tions between habitat or weather and vector abundance/
composition (n = 20). Research topics published more
recently included forecasting (n = 5) and methodology papers
focused on either vector trapping strategies (n = 3) or virus
detection within vectors (n = 4). Only one paper focused on
prevention measures, specifically, infection deterrents in
mosquitoes (Eastep et al., 2012).

Several study designs were utilized across the eligible
citations. Observational studies represented the majority,
both descriptive (n = 41) and analytical (n = 20). Experi-
mental studies (n = 30) were also captured, including ran-
domized control trials related to mosquito surveillance or
trapping effectiveness (n = 5) (Eastwood et al., 2020a; Henry,
2016; Tamini et al., 2021; Urquhart et al., 2016; Williams
et al., 2007), challenge trials related to vector competency
(n = 23), and methodology studies that explored viral detec-
tion techniques (n = 4) (Armstrong et al., 2011; Kinsella et al.,
2020; Ngo et al., 2006; Pabbaraju et al., 2009).

Geographic representation of field data was primarily
focused on North America, representing 20 states within the
continental United States, 4 provinces in Canada, and 2 states
in Mexico (Fig. 3). Eighty-eight percent of the studies
(n = 61) focused on the United States. The remaining 12%
consisted of five studies in Canada (Bassett, 2014; Carson
et al., 2017; Ludwig et al., 2023; Pabbaraju et al., 2009;
Williams et al., 2007), and three studies in Mexico (Blitvich
et al., 2012a; Farfan-Ale et al., 2010; Farfan-Ale et al., 2009).
(Citation allocations per country and state/province are
detailed in Supplementary Data S2.)

Geographic distribution of orthobunyavirus in vectors

CVV was detected in mosquitoes in 10 states or provinces
across all three countries (Fig. 3). Only Montana (USA) was
negative for CVV, but midges were surveilled rather than

FIG. 1. Frequency of vector-related studies (n = 87) that evaluated an orthobunyavirus individually (dark gray, n = 71)
versus in combination with at least one additional orthobunyavirus (light gray, n = 16).
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mosquitoes, which are the natural vector species ( Johnson
et al., 2014). JCV was only detected in the continental United
States, specifically six states (Fig. 3). LACV was also only
detected in the continental United States, specifically 10
states. Extensive focus was given to the central Appalachia
region of the United States (Tennessee, Virginia, West Vir-
ginia, North Carolina), which is considered a hotspot for La
Crosse encephalitis (LACE) in humans (Fig. 3).

SHV was only detected in Newfoundland, Canada, and
North Dakota, the United States (Anderson et al., 2015;
Bassett, 2014; Carson et al., 2017). In summary, all four
orthobunyaviruses were predominantly detected in the east-
ern United States. The remaining regions either did not detect
virus in field-caught vectors, or investigated other factors that
impact orthobunyavirus transmission without directly testing
for a virus. (Regional allocations of citations are detailed in
Supplementary Data S2.)

Only two studies conducted surveillance outside North
America. One study detected orthobunyavirus from mos-
quitoes sampled in Russia that were serologically classified
as SHV, but sequence analysis demonstrated a distinction
from the North American strains (Vanlandingham et al.,
2002). The other study conducted arbovirus surveillance in
Greenland and Svalbard, Norway, but detected no orthobu-
nyaviruses, which the authors attributed to either insignifi-
cant viral activity or a poor experimental design (Mullerova
et al., 2018).

Orthobunyavirus detection by vector species

Natural infection with an orthobunyavirus was surveilled in
43 citations (49%, 43 of 87 citations) that cumulatively tested
86 hematophagous arthropod species, including 85 mosquito
species (Diptera: Culicidae) and 1 biting midge (Diptera:
Ceratopogonidae). Among the mosquito surveillance studies,
eight analyzed secondary data based on trapping protocols
that either targeted general arbovirus testing (Armstrong
et al., 2017; Ngo et al., 2006; Ortiz et al., 2005; Takeda et al.,
2003; Wozniak et al., 2001) or specifically, Eastern equine

encephalitis virus (EEEV) and/or WNV (Anderson et al.,
2015; Molaei et al., 2009; Petruff et al., 2020).

At least one orthobunyavirus was detected in nearly half
the mosquito species tested (44%, 37 of 85 mosquito species),
but no midges were infected with an orthobunyavirus
( Johnson et al., 2014; Reeves and Miller, 2013) (Fig. 4).
CVV was most tested, representing 79 mosquito species
(93%, 79 of 85 mosquito species), of which 24 species (30%,
24/79) across 7 genera were positive for CVV, and 1 midge
species (Culicoides sonorensis) that was negative. The spe-
cies most reported to be positive for CVV included Ae.
japonicus (80%, 4 of 5 citations), Ae. cinereus (80%, 4/5),
and Ae. trivittatus (75%, 6/8). JCV was detected in 33 of 59
mosquito species (56%) distributed across the same 7 genera
as CVV, although the species differed slightly.

The mosquitoes most reported for JCV were Ae. cantator
(100%, 4 of 4 citations), Ae. trivittatus (83%, 5/6), and Ae.
stricticus (75%, 6/8). Fewer species of mosquito were posi-
tive for LACV (17%, 9 of 53 mosquito species), and only Ae.
triseriatus was predominantly positive (55%, 11 of 20 cita-
tions). Few studies reported mosquitoes naturally infected
with SHV (10%, 6 of 63 mosquito species), and mostly in
Ae. abserratus (67%, 2 of 3 citations), Ae. punctor (67%, 2/
3), and Ae. pionips (67%, 2/3).

Viral testing was based on molecular tests (88%, 38 of 43
citations), immunology assays (53%, 23/43), and/or virus
isolation (35%, 15/43). Most studies used multiple tech-
niques to confirm a natural infection (65%, 28/43), and
2 studies (5%, 2/43) did not report testing methods (Morton,
2003; Swanson et al., 2000). All studies determined the
mosquito species based on morphology, and three studies
confirmed with molecular techniques. Similar landscapes
were represented across surveillance studies, which included
urban and rural environments across woodlots, wetlands,
grasslands, and regions with stagnant water. Other aspects of
the methodologies varied greatly, including trap types and
trapping duration relative to the season (i.e., first to last
month), time period per trap (i.e., hours to weeks), and
number of collections per season.

FIG. 2. Bubble plot of the study focus versus publication year stratified by virus (n = 87 citations). Categories were not
mutually exclusive regarding focus or virus type, as exemplified in the summary counts. Circle size corresponds to the
number of citations. Publications in 2021 captured the literature up to March only.
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Orthobunyavirus-vector competency testing

Pathogen transmission in mosquitoes or from mosquitoes
to hosts was explored in 13 studies (Fig. 5), although the
methods used to verify vector competency varied greatly
(Supplementary Table S1). Vertical transmission was con-
firmed for JCV and LACV either by testing adults that were

reared in the laboratory as field-caught eggs (Gottfried et al.,
2002; Reese et al., 2009; Westby et al., 2015) or through
experimental infection of adult mosquitoes before copulation
(Hughes et al., 2006).

Horizontal transmission of CVV and LACV was confirmed
experimentally through forced salivation (Ayers et al., 2019;
Ayers et al., 2018; Camille Harris et al., 2015; Chan et al., 2020;

FIG. 3. Geospatial representation of vector field data collected for orthobunyavirus analysis (n = 69), per province or state
in North America. Citation counts varied across virus (Cache Valley virus = 23, Jamestown Canyon virus = 17, La Crosse
virus = 51, Snowshoe Hare virus = 10) and correspond to the intensity of color per designated region. Note: Hawaii is not to
scale. Shapefiles were obtained from Statistics Canada, United States Census Bureau, and Instituto National de Estadı́stica y
Geografı́a for Mexico. (Citation allocations as well as regions where virus was detected are detailed in Supplementary Data
S2.).

‰

FIG. 4. Orthobunyavirus testing results in field-caught mosquito species in North America, reported in citations published
from 1999 to March 2021 (n = 42 citations). Counts indicate citations and are not mutually exclusive across species. The
total number of mosquito species tested varied by virus: CVV = 79, JCV = 59, LACV = 53, SHV = 63, and results are
presented in alphabetical order based on species name. For mosquito genus shorthand notation, Ae., Aedes; An., Anopheles;
Cq., Coquillettidia; Cs., Culiseta; Cx., Culex; De., Deinocerites; Hg., Haemagogus; Ma., Mansonia; Or., Orthobodomyia;
Ps., Psorophora; Tx., Toxorhynchites; Ur., Uranotaenia; Wy., Wyeomyia. CVV, Cache Valley virus; JCV, Jamestown
Canyon virus; LACV, La Crosse virus; SHV, Snowshoe Hare virus.
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Grim, 2006; Troyano, 2009; Yang et al., 2018) or by virus
detection in body parts (Bara et al., 2016; Reeves and Miller,
2013). Only one study confirmed vector competency using a
host, by assessing infection status of a naı̈ve host (suckling
mice) that was fed upon by LACV-infected mosquitoes (Ae.
japonicus and Ae. triseriatus) (Sardelis et al., 2002). No studies
investigated vector competency for SHV.

Seasonal distribution of orthobunyavirus in vectors

Distinct seasonal trends were observed in terms of when
viral agents were detected from mosquito vectors (Fig. 6).
LACV was detected throughout the mosquito season from
May to October (Eastwood et al., 2020b; Harris et al., 2015;
Nasci et al., 2000; Scheidler et al., 2006; Westby et al., 2015),
while SHV was only detected in July and August (Anderson
et al., 2015; Carson et al., 2017). The peak period for JCV
detection in mosquitoes was in July and coincided with peak
mosquito abundance (Anderson et al., 2018; Anderson et al.,
2015; Andreadis et al., 2008; McMillan et al., 2020).

On the contrary, CVV detection in mosquitoes peaked in
August and September when mosquito abundance was sig-
nificantly reduced (Anderson et al., 2018; Anderson et al.,
2015; Andreadis et al., 2014; McMillan et al., 2020; Ngo
et al., 2006; Ortiz et al., 2005). Although the majority of
studies captured in this scoping review conducted orthobu-
nyavirus surveillance, only 13 studies reported the specific
week or month that viruses were isolated from mosquito
pools.

Vector bloodmeal analysis

Bloodmeal analysis was conducted for 32 mosquito spe-
cies considered important arbovirus vectors, with the aim of
identifying vertebrate species that may serve a critical role as
enzootic amplifiers for orthobunyavirus transmission (Sup-
plementary Table S2) (Anderson et al., 2018; Caldwell, 2004;
Molaei et al., 2009; Molaei et al., 2008; Murdock et al., 2010;
Tamini et al., 2021; Westby et al., 2015). The majority of
mosquito species (27 of 32) were trapped in Connecticut, and
the remaining 5 species were from Colorado, North Carolina,
or Tennessee.

FIG. 5. Orthobunyavirus competency testing under labo-
ratory conditions that examined vertical (n = 3 citations) and
horizontal (n = 10 citations) transmission pathways (addi-
tional details provided in Supplementary Table S1). For
mosquito genus shorthand notation, Ae., Aedes; An., Ano-
pheles; Cx., Culex. CVV, Cache Valley virus; JCV, Ja-
mestown Canyon virus; LACV, La Crosse virus.

FIG. 6. Seasonal trends of orthobunyavirus detection in mosquito surveillance among studies that conducted temporal
analysis (n = 13 citations). Mosquito trapping season varied by study, with June through August represented in all studies,
and May, September, and/or October only represented in a subset. Note: citation counts indicate at least one virus isolation
was detected, not the absolute number of detections per citation.
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Thirty mosquito species fed on mammals, predominantly
white-tailed deer (O. virginianus). Eight of these mosquito
species also fed on birds, predominantly Passeriformes. Four
species were simply opportunistic feeders (Culex territans,
Ae. canadensis, Ae. cantator, and Uranotaenia sapphirina)
(Anderson et al., 2018; Molaei et al., 2008). In summary,
mosquito species that were most commonly infected with an
orthobunyavirus (Fig. 4) were primarily mammalophilic
(Supplementary Table S2).

Risk factors

Four categories were identified among 39 studies that
explored risk factors associated with exposure to vectors
and/or orthobunyavirus (Table 1, references included in
Supplementary Table S3). In cases where the outcome was
exposure to vectors only, the vectors served as proxies for
orthobunyavirus exposure, because the vector surveillance
data represented hotspots for human cases. There were five
times more studies that focused on risk factors associated
with LACV (n = 32) than studies that investigated risk factors
associated with CVV (n = 5), JCV (n = 6), or SHV (n = 2).

Risk factors related to vector ecology were most studied
(n = 24 citations, Table 1). Positive associations were rep-
orted between exposure to competent vectors and types of
land cover, but the relationships were unique to mosquito
species. Positive associations were found between Ae. albo-
pictus, Coquillettidia perturbans, or Ae. japonicus abundance
and residential/urban areas, and between Ae. triseriatus
abundance and forests (Bara and Muturi, 2015; Barker et al.,
2003a; Barker et al., 2003b, Bewick et al., 2016; Ludwig
et al., 2023; Nasci et al., 2000; Tamini et al., 2021; Troyano,
2009) or peridomestic areas with outdoor artificial containers
(Byrd et al., 2018; Nasci et al., 2000; Tamini et al., 2021).

A positive correlation was also identified between vector
abundance and weather factors (e.g., increased cumulative
precipitation, current and lagging seasonal temperatures, and
elevation) (Ghataka et al., 2019; Haddow et al., 2009; Lud-
wig et al., 2023; Nance et al., 2018; Nasci et al., 2000; Reed
et al., 2019).

Conversely, when weather effects on vector susceptibility
to orthobunyaviruses were considered, a large negative cor-

relation was reported between seasonal precipitation and
vectors infected with CVV or JCV (Takeda et al., 2003).
Frequency of encounters between wildlife reservoirs and
infected mosquito vectors was also explored. No relation-
ships were identified; this failure was attributed to the high
abundance of wildlife populations in all study regions
(Andreadis et al., 2014; Andreadis et al., 2008; Caldwell,
2004; Scheidler et al., 2006).

Mosquito species and abundance were also commonly
assessed as risk factors for increased viral exposure (n = 24
citations). Most of these studies surveilled LACV vectors,
and confirmed that endemic regions were strongly associated
with an abundance of Ae. albopictus, Ae. japonicus, and Ae.
triseriatus (Barker et al., 2003a; Byrd et al., 2018; Caldwell,
2004; Erwin et al., 2002; Fryxell et al., 2015; Harris et al.,
2015; Jones et al., 1999; Nasci et al., 2000; Reed et al., 2019;
Rowe et al., 2020; Scheffel, 2006; Tamini et al., 2021;
Troyano, 2009; Westby et al., 2015). However, studies that
compared vector abundance and species diversity between
LACV hotspots (i.e., based on human LACE cases) and con-
trol sites (i.e., no cases reported) that were considered eco-
logically similar, reported no difference in mosquito
composition or abundance between sites (Caldwell, 2004;
Scheffel, 2006).

Trends in vector specificity for other orthobunyaviruses were
not observed. Rather, mosquito species heterogeneity across
multiple genera was consistently reported in endemic regions
for CVV and JCV (based on arbovirus surveillance) (Andreadis
et al., 2014; McMillan et al., 2020; Takeda et al., 2003).

Associations were also explored between mosquito activ-
ity patterns and population dynamics, and exposure levels to
orthobunyavirus vectors (n = 8 citations, Table 1). Time of
day was identified as a risk factor for exposure to LACV
vectors, in that Ae. triseriatus, Ae. albopictus, and Ae. japo-
nicus were significantly more active during evening and
nighttime hours compared with daytime, suggesting a higher
risk of host infection at nighttime if exposed to these vectors
(Urquhart et al., 2017).

Nutritional deprivation had no effect on the prevalence of
LACV infection or dissemination rates for Ae. albopictus
(Westby et al., 2016), but being infected with LACV did alter
certain activities depending on the mosquito species. Shorter

Table 1. Risk Factors Evaluated in Association with Exposure to Orthobunyavirus Vectors

and/or Likelihood of Mosquito Infection

No. of citations

Risk factors investigated in context of vectors All viruses CVV JCV LACV SHV

Vector ecology (e.g., habitat, surrounding landscape and wildlife reservoir
populations, climatic factors including temperature, precipitation)

24 4 5 18 2

Mosquito species and abundance 24 4 2 20 —
Vector bionomics (e.g., blood-feeding behavior, diel period, nutritional

deprivation, parity, interspecies competition, or behavior changes due to
orthobunyavirus infection)

8 2 2 5 —

Individual vector factors (e.g., orthobunyavirus transmission rate changes due
to midgut microbiota or pathogenic coinfections)

5 — — 5 —

Total citations 39 5 6 32 2

The methods used to evaluate risk factors varied greatly across studies, and included various analytical techniques (n = 32, citations in
bold in Supplementary Table S3) or descriptive measures (n = 7 citations in Supplementary Table S3). Risk factor categories are not
mutually exclusive.

CVV, Cache Valley virus; JCV, Jamestown Canyon virus; LACV, La Crosse virus; SHV, Snowshoe Hare virus.
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and more frequent feedings were observed in LACV-infected
Ae. triseriatus, suggesting increased horizontal transmission
by this primary vector ( Jackson et al., 2012). However, no
change was observed in longevity or fecundity in either
LACV-infected Ae. triseriatus or Ae. albopictus (Costanzo
et al., 2014; Reese et al., 2009). More importantly, when also
accounting for interspecies competition between these two
vectors, despite Ae. triseriatus being more likely to become
infected with LACV, its population decreased with the in-
troduction of the invasive Ae. albopictus (Bevins, 2008).

Further, disease modeling that accounted for interspecies
competition between these two species reported a diluting
effect on LACV prevalence when both species were estab-
lished versus the presence of only Ae. triseriatus populations
(Bewick et al., 2016).

The final risk category assessed individual vector factors
on increased virulence (n = 5 citations, Table 1). Dual
infection with LACV and Dirofilaria immitis (heartworms,
another common mosquito-borne pathogen in LACV en-
demic regions) was reported to enhance LACV dissemination
and transmission rates in Ae. albopictus but not in Ae. tri-
seriatus (Grim, 2006; Troyano, 2009). Mosquito midgut
bacteria and fungi also affected viral infection and dissemi-
nation rates in LACV vectors (Muturi et al., 2016).

Discussion

This scoping review, which focused on the epidemiology
of orthobunyaviruses of relevance to Canada, characterized
87 studies published between 1999 and March 2021 related to
vectors and virus transmission. The number of citations per
year trended upward over the study period. LACV was in-
vestigated twice as often as CVV and three times more often
than JCV or SHV. Most citations were surveillance studies
that were highly concentrated geographically and nearly all
in the United States. Most LACV studies represented Ten-
nessee, and the remaining three orthobunyaviruses were most
frequently surveilled in Connecticut, although SHV was
never detected. Few studies surveilled orthobunyaviruses or
vectors in Canada.

Characterization of the surveillance studies revealed sev-
eral takeaway messages. First, isolating virus from positive
mosquito pools is an extremely rare occurrence (Andreadis
et al., 2014; McMillan et al., 2020), especially if traps are not
positioned in ecological areas suitable for orthobunyavirus
vectors. More intensive surveillance efforts in peridomestic,
agricultural, and rural residences alongside forests may
facilitate identifying important orthobunyavirus vectors by
better representing their habitats. Orthobunyavirus surveillance
would also benefit from complementary studies that surveil
vertebrate hosts in overlapping geographies to more accurately
capture the viral prevalence in a region (Bergevin et al., 2023;
Blitvich et al., 2012b; Boromisa and Grimstad, 1987; Carson
et al., 2017; Cully et al., 1991; Dupuis et al., 2021).

Concurrently enhancing mosquito surveillance efforts in
potential hot spots of disease cases has the potential to rapidly
identify primary vectors in designated locales, as has been
successfully demonstrated with LACV vectors in the Appa-
lachia region, the United States (Bewick et al., 2016; Haddow
et al., 2011; Harris et al., 2015; Urquhart et al., 2016).

Additional surveillance techniques may also increase the
likelihood of detecting an orthobunyavirus, such as compo-

nents that can attach to standard adult mosquito traps and
collect mosquito saliva or excreta for pooled virus testing
(L’Ambert et al., 2023; Meyer et al., 2019). These methods
could be a cost-effective solution to complement the widely
distributed and well-established ongoing vector and arbovi-
rus surveillance efforts. However, the value of these novel
techniques in the field is limited due to potential degradation
of the virus prior to analysis or the difficulty in identifying the
mosquito species that was the source of the virus detected in
saliva or excreta samples.

A second key takeaway is that consistent strategies for
mosquito surveillance methodology would facilitate com-
parisons across studies (Gu et al., 2008). This review high-
lighted variation in surveillance methodology and reporting,
which included trap types, trapping frequency and duration
per season, targeted times of day, and landscapes represented.
These differences could lead to biased reporting of mosquito
species as well as misrepresent arbovirus transmission risk.
This may explain the inconsistent results when isolating virus
from the multitude of field-caught mosquito species. Sur-
veillance methodology must be robust and well documented,
given the crucial role these data serve in parameterization of
disease models and as public health transmission risk indi-
cators (Bewick et al., 2016; Ghataka et al., 2019; Rowe et al.,
2020).

Interestingly, there were no mosquito-borne disease pro-
jection studies captured in this review. This is alarming for
Canada, given that CVV, JCV, and SHV are endemic, but
little is known about the ecology and risk factors that may
exacerbate orthobunyaviral transmission (Tjaden et al.,
2018). Further, disease incidence will likely increase due to
factors such as urban sprawl, increased global travel and
trade, and an evolving climate conducive to an extended
season for mosquitoes and viral transmission (Franklinos
et al., 2019; Skinner et al., 2023), but the rate of change is
unknown. These findings necessitate further research on
orthobunyaviral disease modeling and projections under
climate change, to better understand and prepare for pres-
sures placed on human and animal health systems.

Viral transmission was also investigated by experimental
competence studies. However, these studies were few and
focused predominantly on LACV vectors, exotic mosquito
species (Ae. albopictus, Ae. aegypti), or species of the Culex
genus commonly implicated with transmitting WNV (An-
dreadis et al., 2001; Drebot et al., 2003). While virus isolation
from a vector may suggest transmission competency, it is not
sufficient (Dieme et al., 2022). Competency studies are
warranted to identify primary vectors. It was surprising how
few studies sought to identity the primary vectors in endemic
regions for CVV, JCV, or SHV.

Furthermore, as with surveillance studies, there was great
variation in the competence methodologies, which limited
comparisons and extrapolation of results to natural settings.
In fact, only 1 of 13 studies applied the gold standard tech-
nique (Wu et al., 2022) for assessing vector competency by
using a naı̈ve vertebrate host (Sardelis et al., 2002). Con-
sistent metrics that enable repeatable studies whereby only
the mosquito species were to vary would expedite our un-
derstanding of the transmission cycles for the various or-
thobunyaviruses (Wu et al., 2022). Standardizing vector
competency studies may also enhance our knowledge of
horizontal versus vertical transmission in the maintenance of
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enzootic orthobunyavirus cycles, and further, how climate
change may impact those cycles.

There were some limitations in this study. Virus isolation
and vector competency results may have under-represented
certain mosquito species or endemic regions because of the
restricted time frame of eligible citations. However, reviews
on similar subject matter that were not restricted by publi-
cation date reported similar trends to what was reported in
this scoping review (Day et al., 2023; Harding et al., 2019;
Hughes et al., 2023; Shepard and Armstrong, 2023; Waddell
et al., 2019; Walker and Yuill, 2023). This suggests that the
takeaways from this review are not greatly impacted by the
exclusion of citations due to publication date.

Relevant research may also have been excluded due to the
screening inclusion criteria that required that the methods and
results be reported in the context of an orthobunyavirus rather
than only the vector itself. The extensive validation measures
taken during the literature searches did identify a small
number of excluded citations that investigated relevant vec-
tors, particularly Ae. albopictus. However, these studies
evaluated the vector in the context of West Nile, yellow fever,
dengue, or zika virus, and were modeling papers that exp-
lored the climate change effects on projected geographic
distribution of the vector itself and not in relation to the
pathogen (Chen et al., 2013; Laporta et al., 2023; Ogden
et al., 2014). Still, extensive research on this mosquito vector
was characterized in this review based on other studies that
framed the research in an orthobunyavirus context.

Conclusion

North American orthobunyaviruses are widespread in
Canada and the United States based on vector and arbovirus
surveillance. However, these time- and labor-intensive
studies require very large quantities of mosquito pools to be
able to detect virus when present. A multifaceted research
approach is necessary for a better understanding of ortho-
bunyavirus epidemiology. In Canada, this is critical given the
impact of orthobunyaviruses on human and animal health,
and the relatively small number of studies conducted in
surveillance, cluster detection, and disease risk projections.
Considering the impact that climate change is forecasted to
have within Canada, which will likely further promote
orthobunyavirus transmission, research is needed to guide
future public and animal health efforts to mitigate disease.
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